17 research outputs found

    Advances in the neurorehabilitation of severe disorder of consciousness

    Get PDF
    Introduction. The paper describes the evolution of knowledge concerning severe brain  injury which determines the Vegetative State/Unresponsive Wakefulness Syndrome. Background. The term Vegetative State was proposed by Jennet and Plum in 1972. Later  on, the Intensive Care Units progresses increased the survival of these patients and, contemporary, decreased their characteristic conditions of cachexia and severe dystonia. In  1994, the disease was conceived as a disconnection syndrome of the hemispheres from the  brainstem, mainly due to a temporary or permanent deficit of the functions of the white  matter. From 2005 on, the psychophysiological parameters relative to an emotional consciousness, albeit submerged, were described. Since then, it has been recognized that the  brain of these patients was not only to be considered living but also working.Conclusion. The latest studies that have greatly improved the knowledge of the physi-opathology of this particular state of consciousness. These new insights have led to the  formation of a European Union Task Force, which has proposed in 2009 to change the  name  from  a  Vegetative  State  to  Unresponsive  Wakefulness  Syndrome,  outlining  the  character of syndrome and not that of state, as forms of even late recovery in consciousness levels have been observed and described. 

    Care and Neurorehabilitation in the Disorder of Consciousness: A Model in Progress

    Get PDF
    The operational model and strategies developed at the Institute S. Anna-RAN to be applied in the care and neurorehabilitation of subjects with disorders of consciousness (DOC) are described. The institute units are sequentially organized to guarantee appropriate care and provide rehabilitation programs adapted to the patients’ clinical condition and individual’s needs at each phase of evolution during treatment in a fast turnover rate. Patients eligible of home care are monitored remotely. Transferring advanced technology to a stage of regular operation is the main mission. Responsiveness and the time windows characterized by better residual responsiveness are identified and the spontaneous/induced changes in the autonomic system functional state and biological parameters are monitored both in dedicated sessions and by means of an ambient intelligence platform acquiring large databases from traditional and innovative sensors and interfaced with knowledge management and knowledge discovery systems. Diagnosis of vegetative state/unresponsive wakefulness syndrome or minimal conscious state and early prognosis are in accordance with the current criteria. Over one thousand patients with DOC have been admitted and treated in the years 1998–2013. The model application has progressively shortened the time of hospitalization and reduced costs at unchanged quality of services

    Exoskeleton-Robot Assisted Therapy in Stroke Patients: A Lesion Mapping Study

    Get PDF
    Background: Technology-supported rehabilitation is emerging as a solution to support therapists in providing a high-intensity, repetitive and task-specific treatment, aimed at improving stroke recovery. End-effector robotic devices are known to positively affect the recovery of arm functions, however there is a lack of evidence regarding exoskeletons. This paper evaluates the impact of cerebral lesion load on the response to a validated robotic-assisted rehabilitation protocol.Methods: Fourteen hemiparetic patients were assessed in a within-subject design (age 66.9 ± 11.3 years; 10 men and 4 women). Patients, in post-acute phase, underwent 7 weeks of bilateral arm training assisted by an exoskeleton robot combined with a conventional treatment (consisting of simple physical activity together with occupational therapy). Clinical and neuroimaging evaluations were performed immediately before and after rehabilitation treatments. Fugl-Meyer (FM) and Motricity Index (MI) were selected to measure primary outcomes, i.e., motor function and strength. Functional independance measure (FIM) and Barthel Index were selected to measure secondary outcomes, i.e., daily living activities. Voxel-based lesion symptom mapping (VLSM) was used to determine the degree of cerebral lesions associated with motor recovery.Results: Robot-assisted rehabilitation was effective in improving upper limb motor function recovery, considering both primary and secondary outcomes. VLSM detected that lesion load in the superior region of the corona radiata, internal capsule and putamen were significantly associated with recovery of the upper limb as defined by the FM scores (p-level < 0.01).Conclusions: The probability of functional recovery from stroke by means of exoskeleton robotic rehabilitation relies on the integrity of specific subcortical regions involved in the primary motor pathway. This is consistent with previous evidence obtained with conventional neurorehabilitation approaches

    Electromechanical and robotic devices for gait and balance rehabilitation of children with neurological disability: a systematic review

    Get PDF
    In the last two decades, a growing interest has been focused on gait and balance robot-assisted rehabilitation in children with neurological disabilities. Robotic devices allow the implementation of intensive, task-specific training fostering functional recovery and neuroplasticity phenomena. However, limited attention has been paid to the protocols used in this research framework. This systematic review aims to provide an overview of the existing literature on robotic systems for the rehabilitation of gait and balance in children with neurological disabilities and their rehabilitation applications. The literature search was carried out independently and synchronously by three authors on the following databases: MEDLINE, Cochrane Library, PeDro, Institute of Electrical and Electronics Engineers, ScienceDirect, and Google Scholar. The data collected included three subsections referring to clinical, technical, and regulatory aspects. Thirty-one articles out of 81 found on the primary literature search were included in the systematic review. Most studies involved children with cerebral palsy. Only one-third of the studies were randomized controlled trials. Overall, 17 devices (nine end-effector systems and eight exoskeletons) were investigated, among which only 4 (24%) were bore the CE mark. Studies differ on rehabilitation protocols duration, intensity, and outcome measures. Future research should improve both rehabilitation protocols\u2019 and devices\u2019 descriptions

    Information and communication technologies-based interventions for children with autism spectrum conditions: a systematic review of randomized control trials from a positive technology perspective

    Get PDF
    Information and communication technologies (ICTs) have become more widely used in the past years to help people with autism spectrum conditions (ASC). Serious games embedded into computers or tablets, as well as social robots, are the most employed ICT-related tools that are appealing to and appropriate for autistic children. The goal of ICT applications is to enhance behavioral abnormalities associated with ASC while also creating an interactive link between one person and one computer. Comparatively, to human-based therapy, ICT tools aid to inspire autistic children by providing predictability and regularity of tasks. Regaining social skills is the primary behavioral goal for which ICT tools have been designed and implemented. In the past several years, many studies have been created to show how effective it is at improving targeted behaviors. However, only a small number of researchers have used an RCT approach to evaluate its effectiveness. In this systematic review, we only included RCT studies where ICT technologies were used to help children with ASC in improving their social skills. Only 14 RCT studies satisfied the criteria and 12 described significant improvements, showing how the use of technology in educational contexts produced better improvement in developing several social skill facets with respect to the traditional face-to-face approach. Some studies used interventions and outcome measures focused on the core ASC symptoms, but many others addressed neurocognitive functions directly, like social cognition or emotional regulation, while other more general functions such as language or adaptive behaviors. We propose a classification based on processes and outcome measures to foster future research in this specific area of research. The behavioral intervention mediated by technological tools such as computer-based, tablet, and social robotics, undoubtedly provides a comfortable environment that promotes constant learning for people with ASC. Evidence provided in this review highlights the translational potential of this field of study in primary care practice and educational settings

    The Route of Motor Recovery in Stroke Patients Driven by Exoskeleton-Robot-Assisted Therapy: A Path-Analysis

    No full text
    Background: Exoskeleton-robot-assisted therapy is known to positively affect the recovery of arm functions in stroke patients. However, there is a lack of evidence regarding which variables might favor a better outcome and how this can be modulated by other factors. Methods: In this within-subject study, we evaluated the efficacy of a robot-assisted rehabilitation system in the recovery of upper limb functions. We performed a path analysis using a structural equation modeling approach in a large sample of 102 stroke patients (age 63.6 ± 13.1 years; 61% men) in the post-acute phase. They underwent 7 weeks of bilateral arm training assisted by an exoskeleton robot combined with a conventional treatment (consisting of simple physical activity together with occupational therapy). The upper extremity section of the Fugl–Meyer (FM-UE) scale at admission was used as a predictor of outcome, whereas age, gender, side of the lesion, days from the event, pain scale, duration of treatment, and number of sessions as mediators. Results: FM-UE at admission was a direct predictor of outcome, as measured by the motricity index of the contralateral upper limb and trunk control test, without any other mediating factors. Age, gender, days from the event, side of lesion, and pain scales were independently associated with outcomes. Conclusions: To the best of our knowledge, this is the first study assessing the relationship between clinical variables and outcomes induced by robot-assisted rehabilitation with a path-analysis model. We define a new route for motor recovery of stroke patients driven by exoskeleton-robot-assisted therapy, highlighting the role of FM-UE at admission as a useful predictor of outcome, although other variables need to be considered in the time-course of disease

    Data on a novel approach examining the role of the cerebellum in gait performance improvement in patients with Parkinson disease receiving neurologic music therapy

    No full text
    Individuals with idiopathic Parkinson's disease (PD) benefit from Rhythmic Auditory Stimulation (RAS) concerning gait impairment recovery. In PD, RAS may help eliciting rhythmic and automatized motor responses, including gait, by bypassing the deteriorated internal “clock” within basal ganglia for automatic and rhythmic motricity. We aimed at exploring the contribution of the cerebellum to this “bypass effect” in response to RAS. To this end, we examined the cerebellum-cerebral connectivity indices using conventional EEG recording to assess whether the cerebellum contributes to RAS-based post-training effects in persons with PD. Fifty PD patients were randomly assigned to an 8-week training program using Gait-Trainer3 with or without RAS. We measured the Functional Gait Assessment, the Unified Parkinson's Disease Rating Scale, the Berg Balance Scale, the Tinetti Falls Efficacy Scale, the 10-meter walking test, the timed up-and-go test, and the gait quality index derived from gait analysis before and after the end of the training. A standard EEG during gait on the GT3 was also recorded and submitted to eLORETA analysis. Particularly, we focused on the time course of the gait-related activities (which were characterized using the maximum amplitude vertex across the gait cycles) within each brain region of interest. These clinical and electrophysiological measures could be used to monitor the improvement in gait performance in standard clinical settings and to develop new rehabilitation protocols focusing on a holistic functional recovery approach

    When Two Is Better Than One: A Pilot Study on Transcranial Magnetic Stimulation Plus Muscle Vibration in Treating Chronic Pelvic Pain in Women

    No full text
    Chronic pelvic pain syndrome (CPPS) affects about 4–16% of adult women, and about one-third of them require medical assistance due to severe symptoms. Repetitive transcranial magnetic stimulation (rTMS) over the supplementary motor area (SMA) has been shown to manage pain in refractory CPPS. Focal muscle vibration (FMV) has also been reported to relieve pelvic pain. The objective of this study was to assess the feasibility and effect of rTMS coupled with FMV to reduce pain in seven adult women with refractory CPPS. This pilot, open-labeled, prospective trial examined treatment by 5 Hz rTMS over SMA and 150 Hz FMV over the perineum, suprapubic, and sacrococcygeal areas, with one daily session for five consecutive days for three weeks. We assessed tolerance and subjective pain changes (as per visual analog scale, VAS) until one month post-treatment, with a primary endpoint at day 7. No patients experienced serious adverse effects or a significant increase in pain. Six out of seven patients experienced a VAS improvement of at least 10% at T7; three of these individuals experienced a VAS improvement of more than 30%. Overall, we found a significant VAS reduction of 15 points (95% CI 8.4–21.6) at T7 (t = 6.3, p = 0.001; ES = 2.3 (1.1–3.9)). Three of the women who demonstrated a significant VAS reduction at T7 retained such VAS improvement at T30. VAS decreased by six points (95% CI 1.3–10.7) at T30 (t = 3.1, p = 0.02; ES = 1.5 (0.2–2.6)). This coupled approach seems promising for pain management in adult women with refractory CPPS and paves the way for future randomized controlled trials

    Neural Plasticity Changes Induced by Motor Robotic Rehabilitation in Stroke Patients: The Contribution of Functional Neuroimaging

    No full text
    Robotic rehabilitation is one of the most advanced treatments helping people with stroke to faster recovery from motor deficits. The clinical impact of this type of treatment has been widely defined and established using clinical scales. The neurofunctional indicators of motor recovery following conventional rehabilitation treatments have already been identified by previous meta-analytic investigations. However, a clear definition of the neural correlates associated with robotic neurorehabilitation treatment has never been performed. This systematic review assesses the neurofunctional correlates (fMRI, fNIRS) of cutting-edge robotic therapies in enhancing motor recovery of stroke populations in accordance with PRISMA standards. A total of 7, of the initial yield of 150 articles, have been included in this review. Lessons from these studies suggest that neural plasticity within the ipsilateral primary motor cortex, the contralateral sensorimotor cortex, and the premotor cortices are more sensitive to compensation strategies reflecting upper and lower limbs’ motor recovery despite the high heterogeneity in robotic devices, clinical status, and neuroimaging procedures. Unfortunately, the paucity of RCT studies prevents us from understanding the neurobiological differences induced by robotic devices with respect to traditional rehabilitation approaches. Despite this technology dating to the early 1990s, there is a need to translate more functional neuroimaging markers in clinical settings since they provide a unique opportunity to examine, in-depth, the brain plasticity changes induced by robotic rehabilitation
    corecore